Root bacterial endophytes alter plant phenotype, but not physiology
نویسندگان
چکیده
Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.
منابع مشابه
Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots
Endophytes are known to play important roles in plant's health and productivity. In this study, we investigated the root microbiome of tomato in association with infection by root knot nematodes. Our objectives were to observe the effects and response of the bacterial endophytes before nematode attacks and to reveal the functional attributes of microbes in plant health and nematode pathogenesis...
متن کاملBacterial endophytes enhance competition by invasive plants.
UNLABELLED PREMISE OF THE STUDY Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria intera...
متن کاملTwo cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments.
The microbiomes of rhizocompartments (nodule endophytes, root endophytes, rhizosphere and root zone) in soya bean and alfalfa were analysed using high-throughput sequencing to investigate the interactions among legume species, microorganisms and soil types. A clear hierarchical filtration of microbiota by plants was observed in the four rhizocompartments - the nodule endosphere, root endosphere...
متن کاملDominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome
Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and r...
متن کاملThe Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L.
In this study, we investigated the impact of different land use intensities (LUI) on the root-associated microbiome of Dactylis glomerata (orchardgrass). For this purpose, eight sampling sites with different land use intensity levels but comparable soil properties were selected in the southwest of Germany. Experimental plots covered land use levels from natural grassland up to intensively manag...
متن کامل